Аминокислоты

Аминокислоты (далее по тексту — «А.») — это класс органических соединений, объединяющих в себе свойства кислот и аминов, т. е. содержащих наряду с карбоксильной группой — COOH аминогруппу — NH2. В зависимости от положения аминогруппы относительно карбоксильной группы различают α-, β-, γ- и др. А.

Аминокислоты

Рис. Наиболее сложными биополимерами являются белки. Их макромолекулы состоят из мономеров, которыми являются аминокислоты. Каждая аминокислота имеет две функциональные группы: карбоксильную и аминогруппу. Все разнообразие белков создается в результате различных сочетаний 20 аминокислот.

 

А. играют очень большую роль в жизни организмов, т. к. все белковые вещества построены из А. Все белки при полном гидролизе (расщеплении с присоединением воды) распадаются до свободных аминокислот, играющих роль мономеров в полимерной белковой молекуле. При биосинтезе белка порядок, последовательность расположения А. задаются генетическим кодом, записанным в химической структуре дезоксирибонуклеиновой кислоты. 20 важнейших А., входящих в состав белков, отвечают общей формуле RCH(NH2)COOH и относятся к α-аминокислотам.

В природе встречаются и β-аминокислоты., RCH(NH2)CH2COOH, например β-аланин CH2NH2CH2COOH, входящий в состав пантотеновой кислоты. А. могут содержать одну NH2-группу и одну СООН-группу (моноаминокарбоновые кислоты), одну NH2-группу и две СООН-группы (моноаминодикарбоновые кислоты), две NH2-группы и одну СООН-группу (диаминомонокарбоновые кислоты).

Моноаминокарбоновые кислоты:

  • Глицин — NH2CH2COOH
  • Аланин — CH3CH (NH2) COOH
  • Цистеин — CH2(SH)CH(NH2)COOH
  • Метионин — CH2 (SCH3) CHмCH (NH2) COOH
  • Валин-(СН3)2СНСН(МН2)СООН и др.

Моноаминодикарбоновые кислоты:

  • Аспарагиновая — HOOC CHмCH (NH2) COOH
  • Глутаминовая — HOOC (CH2)2CH (NH2) COOH

Диаминомонокарбоновые кислоты:

  • Лизин — NH2CH2(CH3)2CH(NH2)COOH
  • Аргинин — NH2C(=NH)NH(CH2)3CH(NH2)COOH и др.

Аминокислоты — бесцветные кристаллические вещества, растворимые в воде; их температура плавления составляет 220 — 315°С. Высокая температура плавления связана с тем, что их молекулы имеют структуру главным образом амфотерных (двузарядных) ионов. Например, строение простейшей аминокислоты — глицина — можно выразить формулой (а не NH2CH2COOH).

Все природные А., кроме глицина, содержат асимметричные атомы углерода, существуют в оптически активных модификациях и, как правило, относятся к L-ряду. Аминокислоты D-ряда содержатся только в некоторых антибиотиках и в оболочках бактерий.

Многие растения и бактерии могут синтезировать все необходимые им А. из простых неорганических соединений. Большинство А. синтезируются в теле человека и животных из обычных безазотистых продуктов обмена веществ и усвояемого азота. Однако 8 аминокислот (валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин) являются незаменимыми, т. е. не могут синтезироваться в организме животных и человека, и должны доставляться с пищей.

Суточная потребность взрослого человека в каждой из незаменимых аминокислот составляет в среднем около 1 г. При недостатке этих А. (чаще триптофана, лизина, метионина) или в случае отсутствия в пище хотя бы одной из них невозможен синтез белков и многих других биологически важных веществ, необходимых для жизни. Гистидин и аргинин синтезируются в животном организме, но лишь в ограниченной, иногда недостаточной, мере. Цистеин и тирозин образуются лишь из своих предшественников — соответственно метионина и фенилаланина — и могут стать незаменимыми при недостатке этих А. Некоторые А. могут синтезироваться в животном организме из безазотистых предшественников при помощи процесса переаминирования, т. е. переноса аминогруппы с одной аминокислоты на др.

В организме А. постоянно используются для синтеза и ресинтеза белков и других веществ — гормонов, аминов, алкалоидов, коферментов, пигментов и др. Избыток аминокислоты подвергается распаду до конечных продуктов обмена (у человека и млекопитающих до мочевины, двуокиси углерода и воды), при котором выделяется энергия, необходимая организму для процессов жизнедеятельности. Промежуточным этапом такого распада является обычно дезаминирование (чаще всего окислительное).

К числу производных А., представляющих большой практический интерес, относится лактам ω-аминокапроновой кислоты — исходный продукт производства капрона.

Известно много методов синтеза аминокислот, например действие аммиака на галогензамещённые карбоновые кислоты:

RCHCICOOH+2NH3 → RCHNH2COOH + NH4CI,

восстановление оксимов или гидразонов, кето- или альдегидокислот:

RC(= NOH)COOH → RCHNH2COOH

и др.

Некоторые А. выделяют из продуктов гидролиза богатых ими белков методом адсорбции на ионообменных смолах; так выделяют глутаминовую кислоту из казеина и клейковины злаков; тирозин — из фиброина шёлка; аргинин — из желатины; гистидин из белков крови. Некоторые А. производят синтетически, например метионин, лизин и глутаминовую кислоту. А. получают в больших количествах также микробиологическим синтезом. Поступление в организм незаменимых аминокислот определяется количеством и аминокислотным составом пищевых белков. Это следует учитывать для организации правильного общественного питания и составления рационов для разных возрастных и профессиональных групп населения. Потребность в пищевом белке может быть полностью покрыта за счёт смеси А. Этим пользуются в лечебном питании.

А. применяют в медицине: для парентерального питания больных (т. е. минуя желудочно-кишечный тракт) с заболеваниями пищеварительных и других органов, а также для лечения заболеваний печени, малокровия, ожогов (метионин), язв желудка (гистидин), при нервно-психических заболеваниях (глутаминовая кислота и т. п.); в животноводстве и ветеринарии — для питания (см. ниже) и лечения животных, а также в микробиологической, медицинской и пищевой промышленности.

Изучение аминокислотного состава белков и обмена А. проводят рядом цветных реакций, например нингидриновой реакцией, а также методами хроматографии и с помощью специальных автоматических приборов — анализаторов А.

Аминокислоты в кормлении сельскохозяйственных животных

 

Рационы с.-х. животных должны содержать все необходимые организму аминокислот, особенно незаменимые, поэтому при организации кормления в настоящее время стали учитывать в кормах не только общее количество протеина, как было принято раньше, но и незаменимых А. Потребность в А. у разных видов животных неодинакова. У жвачных животных микрофлора преджелудков способна синтезировать все необходимые организму А. из аммиака, выделяющегося при распаде белка или небелковых азотистых соединений, например мочевины. Нормирования А. для этих животных не проводят. Однако с целью пополнения рациона животных небелковыми азотистыми веществами применяют мочевину.

Молодняк жвачных, у которого ещё недостаточно развиты преджелудки, испытывает некоторую потребность в незаменимых аминокислотах Рационы свиней и птицы обязательно балансируют по содержанию А. С этой целью подбирают корма, дополняющие друг друга по аминокислотному составу, а также используют синтетические А., выпускаемые промышленностью.

Синтетические А. скармливают в смеси с концентратами; целесообразнее добавлять их в комбикорма промышленного изготовления.

Избыток аминокислот отрицательно влияет на организм животных. (И. Б. Збарский, Я. Ф. Комиссаров)

Открытие аминокислот в составе белков

 

Аминокислота Аббреви-атура Год Источник Кто впервые выделил
Глицин Gly, G 1820 Желатин Анри Браконно
Лейцин Leu, L 1820 Мышечные волокна А. Браконно
Тирозин Tyr, Y 1848 Казеин Ф. Бопп
Серин Ser, S 1865 Шёлк Э. Крамер
Глутаминовая кислота Glu, E 1866 Растительные белки Г. Риттхаузен
Глутамин Gln, Q
Аспарагиновая кислота Asp, D 1868 Конглутин, легумин (ростки спаржи) Г. Риттхаузен
Аспарагин Asn, N 1806 Сок спаржи Л.-Н. Воклен и П. Ж. Робике
Фенилаланин Phe, F 1881 Ростки люпина Э. Шульце, Й. Барбьери
Аланин Ala, A 1888 Фиброин шелка Т. Вейль
Лизин Lys, K 1889 Казеин Э. Дрексель
Аргинин Arg, R 1895 Вещество рога С. Гедин
Гистидин His, H 1896 Стурин, гистоны А. Кессель, С. Гедин
Цистеин Cys, C 1899 Вещество рога К. Мёрнер
Валин Val, V 1901 Казеин Герман Эмиль Фишер
Пролин Pro, P 1901 Казеин Э. Фишер
Гидроксипролин Hyp, hP 1902 Желатин Э. Фишер
Триптофан Trp, W 1902 Казеин Ф. Гопкинс, Д. Кол
Изолейцин Ile, I 1904 Фибрин Ф. Эрлих
Метионин Met, M 1922 Казеин Герман Джозеф Мёллер
Треонин Thr, T 1925 Белки овса С. Шрайвер и др.
Гидроксилизин Hyl, hK 1925 Белки рыб С. Шрайвер и др.

 

Более подробно об аминокислотах читайте в литературе:

  • Майстер А., Биохимия аминокислот, перевод с английского, М., 1961;
  • Аминокислотное питание свиней и птицы, М., 1963;
  • Борис Ильич Збарский, Илья Иванович Иванов, Сергей Руфович Мардашев, Биологическая химия, 4 изд., Л., 1965;
  • Иван Семенович Попов, Аминокислотный состав кормов, 2 изд., М., 1965;
  • Обмен аминокислот. Материалы Всесоюзной конференции [13 — 17 окт. 1965], Тбилиси, 1967;
  • Вацлав Леонович Кретович, Основы биохимии растений, 4 изд., М., 1964.
  • Общая биология. Учебник для 9 — 10 классов средней школы. Под ред. Ю. И. Полянского. Изд. 17-е, перераб. — М.: Просвещение, 1987. — 288с.;
  • Аминокислоты, пептиды, белки. Под ред. Ю. В. Митина;
  • Садовникова М. С., Беликов В. М. Пути применения аминокислот в промышленности. //Успехи химии. 1978. Т. 47. Вып. 2. С. 357―383.



Понравилась статья? Поделитесь с друзьями!

Рубрика: Тезаурус


Если вам понравилась статья, вы можете оставить комментарий или подписаться на новости, что бы получать каждую новую статью этого сайта.
Комментарии к статье

Внимание! Реклама, сквернословие, спам и пр. не по теме статьи удаляется. Для размещения рекламы обратитесь к администрации сайта.

Пока никто не комментировал, будьте первым!

Оставить комментарий

(обязательно)

(обязательно, нигде не публикуется)


*